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Topics in Social-Cognitive Neuroscience

• How do we process and represent other

people’s minds and how do they influence

us?

SOCIAL IN FLUENCE

BEING IN GROUP

• Perception and memory of socially salient features (i.e. facial  

attractiveness, trustworthiness, emotional expressions)

• Action observation (Imitation, mirror neurons)

• Theory of Mind (TOM) & Mentalizing

• Empathy

• Moral emotions and moral and social reasoning

• Self Concept, Distinction between Self and Others

Social Level

Behavioral Level

Cognitive Level

Neural Level
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Economic and Machine Learning and 

Neuroscience

 Theoretical frameworks in economics and machine learning and their

applications in recent behavioral and neurobiological studies are summarized

 Examples of such applications in clinical domains are also discussed for

substance abuse, Parkinson’s disease, attention-deficit/hyperactivity

disorder,schizophrenia, mood disorders, and autism(Lesion study)



 Decision making is an abstract term referring to the process of selecting a

particular option among a set of alternatives expected to produce different

outcomes.

 it can be used to describe an extremely broad range of behaviors, ranging

from various taxes of unicellular organisms to complex political behaviors in

human society.



Two different approaches have dominated

the studies of decision making

 1-a normative or prescriptive approach addresses the question of what is the 
best or optimal choice for a given type of decision-making problem.: EX: the 
principle of utility maximization in economics and the concept of 
equilibrium in the game theory describe how self-interested rational agents 
should behave individually or in a group, respectively (von Neumann and 
Morgenstern, 1944)

 2-Real behaviors of humans and animals seldom match the predictions of 
such normative theories. Thus, empirical studies seek to identify a set of 
principles that can parsimoniously account for

 the actual choices of humans and animals: EX:Similarly, empirical studies 
have demonstrated that humans often choose their behaviors altruistically
and thus deviate from the predictions from the classical game theory 
(Camerer, 2003)



 Recently, these two traditional approaches of decision making research have 
merged with two additional disciplines

 1-First, it is now increasingly appreciated that learning plays an important 
role in decision making, although this has been ignored in most economic 
theories. In particular, reinforcement learning theory, originally rooted in 
psychological theories of learning in animals (Mackintosh, 1974) and optimal 
control theory (Bellman, 1957), provides a valuable framework to model 
how decision-making strategies are tuned by experience (Sutton and 
Barto, 1998).

 2-Second, and more importantly for the purpose researchers have begun to 
elucidate a number of important core mechanisms in the brain responsible 
for various computational steps of decision making and reinforcement 
learning (Wang, 2008; Kable and Glimcher, 2009; Lee et al., 2012)



economic and reinforcement learning 

and decision making”neuroscience”

 Actions are chosen through coordination among multiple brain systems, each 

implementing a distinct set of computational algorithms (Dayan et al., 2006; Rangel et 

al., 2008; Lee et al., 2012; van der Meer et al., 2012; Delgado and Dickerson, 2012).



Models of Decision Making  

 Utility functions with different 
types of risk preference

 Value functions in prospect 
theory. Solid (dotted) line shows 

the value function with (without) 
loss aversion

 Exponential versus
hyperbolic temporal
discount functions.

 Weights
assigned to the
previous outcomes
at different time
lags according to
two different
learning rates (a)
in a model-free
reinforcement
learning algorithm



Economic Decision Making

Decision Making under Risk

 Economy :Utility: the strength of a decision maker’s preference for a

particular option. When the preference of a decision maker between

different outcomes satisfies a certain set of properties, such as transitivity,

the utility of a given option can be expressed as a real number.

 When the outcomes of a choice are uncertain, its utility can be  computed 

as the average of the utilities of different outcomes weighted by their 

probabilities, and is referred to as expected utility (von Neumann and 

Morgenstern, 1944).

 In this:the shape of the utility function determines the decision maker’s 

attitude toward uncertainty or risk.



UT Exam

 When the utility function increases linearly with the quantity of a 
particular good, such as money, the decision maker would be 
indifferent between the certainty of receiving x and the chance of 
doubling x or getting nothing with equal probabilities= risk-neutral 
DM

 When the utility function is concave and has a negative second 
derivative, this implies that the utility of getting x is less than twice 
the utility of getting x/2=avoid the same gamble= risk averse DM

 A decision maker whose choices are consistent with the principle of 
maximizing expected utilities = rational DM, regardless of his or her 
attitude toward risk.

 Rational decision makers, only the probabilities and utilities of 
different outcomes should influence their choices



choices of human decision makers are 

influenced by other contextual factors

 Status quo, 

 Different outcomes are weighted by quantities 

 Only loosely related to probabilities



In prospect theory (Kahneman and Tversky,

1979),

 the desirability of a decision outcome is determined by its deviation from a 

reference point.

 The precise location of the reference point can change depending on the 

description of alternative options, and gains and losses from this reference 

point are evaluated differently by the so-called value function.

 the term ‘‘value’’ is used somewhat more loosely even when preference 

does not satisfy the formal definition of utility. In prospect theory, the value 

function is concave for gains and convex for losses, accounting for the 

empirical findings that humans are risk-averse and risk-seeking for gains 

and losses, respectively.



Loss Aversion

Value function:EX

 most people would prefer a sure gain of $1,000 to a 50% chance of gaining 
$2,000, while preferring a 50% chance of losing $2,000 to a sure loss of $1,000.

 the slope of the value function near the reference point is approximately twice 
as large for losses than for gains.

 1-This accounts for the fact that humans are often more sensitive to a loss than a 
gain of the same magnitude, which is referred to as loss aversion (Tversky and 
Kahneman, 1992).

 2-Deficiency in expected utility theory: in real life, the exact probabilities of 
different outcomes from a particular choice are often unknown. This type of 
uncertainty is referred to as ambiguity.

 The term ambiguity aversion is often used to describe the tendency to avoid an 
option for which the exact probabilities of different outcomes are not known 
(Camerer and Weber, 1992).



Intertemporal Choice

 For practically all decisions made in real life, reward from chosen actions

become available after substantial delays.

 Faced with a choice between a small but immediate reward and a larger but

more delayed reward, humans and animals tend to prefer

 the Smaller reward if the difference in the reward magnitude is

sufficiently small or if the delay for the larger reward is too long. This

implies that the utility for a delayed reward decreases with the duration of its

delay.

 Formally, a discount function is defined as the fraction of the utility for 

delayed reward relative to that of the same reward without any delay.



 A discount function that decays steeply with reward delay corresponds to an impatient or
impulsive decision maker who assigns a large weight to an immediate reward. A variety of
mathematical functions have been proposed for discount functions, including an exponential
function (Samuelson, 1937)

 An important property of an exponential discount function is that the rate of discounting 
per unit length of time is constant.=discount functions are time consistent.

 EX: a decision maker prefers one of the two rewards expected after unequal delays, the 
mere passage of time does not alter this preference.

 Majority of empirical studies in humans and animals found that discount rate decreases for 
long delays(Mazur, 2000). This can be modeled more accurately by hyperbolic or 
quasihyperbolic discount functions (Green and Myerson,2004; Phelps and Pollak, 1968; 
Laibson, 1997; Hwang et al.,2009; ). Compared to the exponential discount function,

 hyperbolic discount functions imply that decision makers are particularly attracted to the
immediate reward with no delay , although the same person might prefer a larger and
more delayed reward if some additional delays are added to both options equally. This is
referred to as preference reversal (Strotz,1955–1956).



Some limitations

 1-First, there are cases in which humans display negative time preference, 

namely, the value of an outcome increases when it is delayed (Loewenstein, 

1987)EX:some people prefer to obtain a kiss from their favorite movie stars 

after a delay than immediately, suggesting that they might derive some 

satisfaction from the anticipation of pleasurable future outcomes. Similarly, 

some people prefer to experience painful events sooner rather than later 

(Berns et al., 2006).

 2-Second, when people choose between two different sequences of 

outcomes, the overall utility of a particular outcome sequence may not 

correspond to the sum of the discounted utilities of individual outcomes. 

Instead, human decision makers tend to prefer a sequence of outcomes that 

improve over time (Loewenstein and Prelec, 1993).
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Neural Encoding of Utilities and Values

 Multiple brain regions during decision making involving uncertain outcomes.

 neurons modulating their activity according to the expected value of reward available from a 
particular target location are found in the basal ganglia (Samejima et al., 2005), posterior parietal 
cortex (Platt and Glimcher, 1999; Dorris and Glimcher, 2004; Sugrue et al., 2004; Seo et al., 2009; 
Louie et al., 2011), premotor cortex (Pastor-Bernier and Cisek, 2011), and medial prefrontal cortex 
(Sohn and Lee, 2007; Seo and Lee, 2009; So and Stuphorn, 2010)

 Many of these brain areas might in fact encode the signals related to utilities of reward expected 
from specific actions, even when the probabilities and timing of reward vary. For example, 
temporally discounted values are encoded by neurons in the prefrontal cortex (Kim et al., 2008), 
posterior parietal cortex (Louie and Glimcher, 2010), and the striatum (Cai et al., 2011).

 FMRI signals: related to utilities in multiple brain areas, including the (VMPFC) and ventral striatum 
(Kuhnen and Knutson, 2005; Knutson et al., 2005; Knutson et al., 2007; Luhmann et al., 2008; Chib et 
al., 2009; Levy et al., 2011). Consistent with the results from single-neuron recording studies (Sohn
and Lee, 2007), signals related to values of reward expected  from specific motor actions have been 
identified in the human supplementary motor area (Wunderlich et al., 2009). Activity in the VMPFC 
and ventral striatum display additional characteristics of value signals used for decision making.
activity in each of these areas is influenced oppositely by expected gains and losses.

 activity in these areas is more enhanced for expected losses than for expected gains, and this 
difference is related to the level of loss aversion across individuals (Tom et al., 2007).





 The VMPFC and ventral striatum also reflects temporally discounted values 

for delayed reward during inter-temporal choice (Kable and Glimcher,2007; 

Pine et al., 2009). 

 FMRI and lesion studies : the amygdala might play a role in estimating value 

functions according to potential losses. 

 EX, the amygdala changes according to whether a particular outcome is 

framed as a gain or a loss (De Martino et al., 2006), and loss aversion is 

abolished in patients with focal lesions in the amygdala (De Martino et al., 

2010).



DLPFC

 Decisions are based on values computed for specific goods or their locations, and 

which brain areas encode the value signals actually used for action selection, 

might vary depending on the nature of choices to be made (Lee et al., 2012).

 DLPFC:  flexible switching between different types of value signals used for 

decision making. This is possible, since the DLPFC is connected with many other 

brain areas that encode different types of value signals (Petrides and Pandya, 

1984; Carmichael and Price, 1996; Miller and Cohen, 2001). 

 In addition, individual neurons in the DLPFC can modulate their activity 

according to value signals associated with specific objects as well as their 

locations (Kim et al., 2012b). 

 In contrast, neurons in the primate orbitofrontal cortex tend to encode the 

signals related to utilities assigned to specific goods independent of their 

locations (Padoa-Schioppa and Assad, 2006).





In addition to the desirability of 

expected outcomes

 the likelihood of choosing a particular action is also influenced by the cost of 

performing that action. Although the activity of neurons in the orbitofrontal 

cortex and striatum is often modulated by multiple parameters of reward,

 the signals related to the cost or efforts associated with a particular action 

might be processed preferentially in the anterior cingulate cortex. This 

possibility is consistent with the results from lesion studies (Walton et al., 

2003; Rudebeck et al., 2006), as well as single-neuron recording and 

neuroimaging studies (Croxson et al., 2009; Kennerley et al.,2009; Pre´ vost

et al., 2010; Hillman and Bilkey, 2010)





Reinforcement Learning Multiple 

Systems for Reinforcement Learning

 most economic decision-making experiments: subjects select from a small 

number of options with relatively well-characterized outcomes

 Real life: are more complex, and it is often necessary to make appropriate 

changes in our decision-making strategies through experience

 1-First, the likelihood that a particular action would be chosen would change 

depending on whether its previous outcome was reinforcing or punishing 

(Thorndike, 1911)

 2- Second, new information about the regularities in our environment can be 

used to improve the outcomes of our choices, even when it is not directly 

related to reward or penalties (Tolman, 1948).



Reinforcement learning theory

 : a powerful framework to formalize how these two different kinds of 
information can modify the values associated with alternative actions (Sutton 
and Barto, 1998).

 In this framework, it is assumed that the decision maker is fully knowledgeable 
about the current state of his or her environment, which determines the 
outcome of each action as well as the probability distribution of its future 
states. This property is referred to as Markovian.

 reinforcement learning theory, a value function corresponds to the decision 
maker’s subjective estimate for the long-term benefits expected from being in 
a particular state or taking a particular action in a particular state. These two 
different types of value functions are referred to as state and action value 
functions, respectively. Action value functions in reinforcement learning theory 
play a role similar to that of utilities in economics,but there are two main 
differences.

 1-First, value functions are only estimates, since they are continually adjusted 
according to the decision maker’s experience. 

 2-Second, value functions are related to choices only probabilistically. This can 
be beneficial,since such apparently suboptimal behaviors can eventually increase 
the accuracy of value functions, thereby providing a potential solution to the 
exploration-exploitation dilemma(Sutton and Barto, 1998).



Reinforcement learning theory
 Value functions, can be estimated according to several  different algorithms, which might be 

implemented by different  anatomical substrates in the brain (Daw et al., 2005; Dayan  et al., 

2006; van der Meer et al., 2012). 

 These different algorithms  are captured by animal learning theories. 

 1-First, a sensory  stimulus (conditioned stimulus, CS) reliably predicting appetitive  or aversive 

outcome (unconditioned stimulus, US) eventually  acquires the ability to evoke a predetermined 

behavioral  response (conditioned response, CR) similar to the responses  originally triggered 

by the predicted stimulus (unconditioned response, UR; Mackintosh, 1974). The strength of this 

association  can be referred to as the Pavlovian value of the CS (Dayanet al., 2006).

 2- Second, during instrumental model-free reinforcement learning, or simply habit learning, 

value function correspond  to the value of appetitive or aversive outcome expected  from an 

arbitrary action or its antecedent cues. Computationally, these two types of learning can be 

described similarly using a simple temporal difference (TD) learning algorithm, analogous to 

the Rescorla-Wagner rule (Rescorla and Wagner, 1972). 



 In both cases, value functions are adjusted according to the difference 
between the actual outcome and the outcome expected from the current 
value functions. This difference is referred to as the reward prediction 
error. In the case of Pavlovian learning, the value function is updated for 
the action predetermined by the US, whereas for habit learning, the value 
function is updated for any arbitrary action chosen by the decision maker 
(Dayan et al., 2006). 

 The rate in which the reward prediction error is incorporated into the 
value function is controlled by a learning rate. 

 A small learning rate allows the decision maker to integrate the outcomes 
from previous actions over a large time scale .

 Learning rates can be adjusted according to the stability of the decision-
making environment (Behrens et al.,2007; Bernacchia et al., 2011).



 Finally, when humans and animals acquire new information  about the properties 
of their environment, this knowledge can  be utilized to update the value 
functions for some actions and improve decision-making strategies, without 
experiencing the actual outcomes of their actions (Tolman, 1948). 

 This is referred to as model-based reinforcement learning, since the value 
functions are updated by simulating the outcomes expected from various 
actions using the decision maker’s internal or mental model of the environment 
(Sutton and Barto, 1998; Doll et al., 2012). 

 Formally, the knowledge or model of the decision maker’s environment can be 
captured by transition probabilities for the environment to switch between two 
different states (Sutton and Barto, 1998). 

 Therefore, when the estimates of these transition probabilities are revised, the 
likelihood of different outcomes expected from various actions can be 
recalculated, even if the outcomes from all the states remain unchanged 
(Packard and McGaugh, 1996). 

 Similarly, if the subjective values of specific outcomes change as a result of 
selective feeding or taste aversion, the value functions for actions leading to 
those outcomes can be revised without directly experiencing them (Holland 
and Straub, 1979; Dickinson, 1985). 

 Therefore, the choices predicted by model-free and model-based 
reinforcement learning algorithms, as well as their corresponding neural 
mechanisms, might be different.



Neural Substrates of Model-free 

Reinforcement Learning

 As described above, errors in predicting affective outcomes, namely, reward
prediction errors, are postulated to drive model-free reinforcement learning,
including both Pavlovian conditioning and habit learning.

 An important clue for the neural mechanism of reinforcement learning was
therefore provided by the observation that the phasic activity of midbrain
dopamine neurons encodes the reward prediction error (Schultz, 1998).

 Dopamine neurons innervate many different targets in the brain, including the
cerebral cortex (Lewis et al., 2001), striatum (Bolam et al., 2000; Nicola et al.,
2000), and amygdala (Sadikot and Parent, 1990).

 In particular, the amygdala might be involved in both fear conditioning (LeDoux,
2000) and appetitive Pavlovian conditioning (Hatfield et al., 1996; Parkinson et
al., 2000; Paton et al., 2006).

 Induction of synaptic plasticity in the amygdala that underlies Pavlovian
conditioning might depend on the activation of dopamine receptors (Guarraci et
al., 1999; Bissie` re et al., 2003).

 In addition, the ventral striatum also contributes to several different forms of
appetitive Pavlovian conditioning,such as auto-shaping, conditioned place
preference, and second-order conditioning (Cardinal et al., 2002).



 Given the increased range of actions controlled by habit learning, the 
anatomical substrates for habit learning might be more extensive compared to the 
areas related to Pavlovian conditioning, and are likely to span both cortical and 
subcortical areas.

 Nevertheless, the striatum has received much attention due to its dense 
innervation by dopamine neurons (Houk et al., 1995). 

 The striatum integrates inputs from almost all cortical areas, and influences 
the activity of neurons in the motor structures, such as the superior colliculus
and pedunculopontine nucleus, largely through disinhibitory mechanisms 
(Chevalier and Deniau, 1990; Mink, 1996).

 In addition, striatal neurons in the direct and indirect pathways express D1 and 
D2 dopamine receptors respectively, and might influence the outputs of the 
basal ganglia antagonistically (Kravitz et al., 2010; Tai et al., 2012; but see Cui et 
al., 2013). 





 Dopamine-dependent, bidirectional modulation of corticostriatal synapses might provide 
the biophysical substrates for integrating the reward prediction error signals into value 
functions in the striatum (Shen et al., 2008; Pawlak and Kerr, 2008; Wickens, 2009).

 Indeed, neurons in the striatum often encode the value functions for specific actions 
(Samejima et al., 2005; Lau and Glimcher, 2008; Cai et al., 2011; Kim et al., 2009, 2013).

 In addition, signals necessary for updating the value functions, including the value of the 
chosen action and reward prediction errors, are also found in the striatum (Kim et al., 2009; 
Oyama et al., 2010; Asaad and Eskandar, 2011). 

 Moreover, the dorsolateral striatum, or the putamen, might be particularly involved in 
controlling habitual motor actions (Hikosaka et al., 1999; Tricomi et al., 2009). 

 Although the striatum is most commonly associated with model-free reinforcement 
learning, additional brain areas are likely to be involved in the process of updating action 
value functions, depending on the specific type of value functions in question. 

 Indeed, signals related to value functions and reward prediction errors are found in many 
different areas (Lee et al., 2012). 

 Similarly, using a multivariate decoding analysis, signals related to rewarding and 
punishing outcomes can be decoded from the majority of cortical and subcortical areas 
(Figure 2; Vickery et al.,2011).



Neural Substrates for Model-Based 

ReinforcementLearning

 The neural substrates for model-based reinforcement learning are much less well understood 
compared to those for Pavlovian conditioning and habit learning (Doll et al., 2012). 

 nature of computations for simulating the possible outcomes and their neural implementations
might vary widely across various decision-making problems. 

 EX, separate regions of the frontal cortex and striatum in the rodent brain might underlie 
model-based reinforcement learning (place learning) and habit learning (response learning; 
Tolman et al., 1946).

 In particular, lesions in the dorsolateral striatum and infralimbic cortex impair habit learning, 

 lesions in the dorsomedial striatum and prelimbic cortex impair (Balleine and Dickinson, 1998; 
Killcross and Coutureau, 2003; Yin and Knowlton, 2model based reinforcement learning006). 

 In addition, lesions or inactivation of the hippocampus suppresses the strategies based on 
model-based reinforcement learning (Packard et al., 1989; Packard and McGaugh, 1996).

 To update the value functions in model based  reinforcement learning, the new information 
from the decision maker’s environment needs to be combined with  the previous knowledge 
appropriately. Encoding and updating the information about the decision maker’s environment 
might rely on the prefrontal cortex and posterior parietal cortex (Pan et al., 2008; Gla¨ scher 
et al., 2010; Jones et al., 2012).



 In addition, persistent activity =the computations related to reinforcement learning and 
decision making in addition to working memory (Kim et al., 2008; Curtis and Lee, 2010).

 Given that persistent activity in the prefrontal cortex is strongly influenced by dopamine 
and norepinephrine (Arnsten et al., 2012), 

 The neural mechanisms of mental simulations  necessary for estimating the hypothetical 
outcomes predicted  from this new knowledge are also poorly understood, but might  
include the hippocampus. 

 EX:, the animal is at a choice point during a maze learning task, activity of neurons in the 
hippocampus briefly represents the potential goal locations, which has been interpreted as 
a neural correlate of mental simulation (Tolman, 1948; Johnson and Redish, 2007).

 In addition, the orbitofrontal cortex might play an important role in selecting actions 
according to the value functions estimated by model based reinforcement learning 
algorithms, when the subjective values of expected outcomes change (Izquierdo et al., 
2004; Valentin et al., 2007).



 the neural substrates involved in updating value functions according to 

different reinforcement learning algorithms might overlap substantially.

 EX:, reward prediction error signals encoded in the ventral striatum reflect 

the estimates derived from both model-free and modelbased reinforcement 

learning algorithms (Lohrenz et al., 2007; Daw et al., 2011; Wimmer et al., 

2012). 



 Figure 2. Ubiquitous Reward Signals in theBrain

Brain areas encoding reward signals during a 

matching pennies task that was identified with a

multivoxel pattern analysis (Vickery et al., 2011).



Learning Theory 



Prediction error – the discrepancy between an actually 

received reward and its prediction. 

Learning is proportional to the prediction error.

Dopamine response = Reward occurred – Reward predicted 



Mental Simulation and Default Network

 Several cognitive processes closely related to episodic memory, such as self-
projection, episodic future thinking, mental time travel, and scene 
construction (Atance and O’Neill, 2001; Tulving, 2002; Hassabis and Maguire, 
2007; Corballis, 2013),

 might be involved in simulating the outcomes of hypothetical actions. 

 Common to all of these processes is the activation of the memory traces relevant 
for predicting the likely outcomes of potential actions in the present context. 
In addition, even when possible outcomes are explicitly specified for each 
option,

 the process of evaluating the subjective values of each option might still rely 
on mental simulation. This might be particularly true during intertemporal
choice. In fact, imagining a future planned event during intertemporal choice 
reduces the rate of temporal discounting (Boyer, 2008; Peters and Bu¨ chel, 
2010).



 It has been proposed that the computations involved in episodic future thinking and 
mental time travel might be implemented in the default network (Buckner and Carroll, 
2007). 

 The default network (DMN) refers to a set of brain areas that increase their activity when 
the subjects are not engaged in a specific cognitive task, such as during intertrial
intervals, presumably reflecting the activity related to more spontaneous cognitive 
processes. 

 This network includes the medial prefrontal cortex, posterior cingulate cortex, and 
medial temporal lobe (Buckner et al., 2008). 

 Mental simulation of hypothetical outcomes might be an important component of such 
spontaneous cognition. 

 EX:, during intertemporal choice, the activity of the posterior cingulate cortex reflects 
the subjective values of delayed reward (Kable and Glimcher, 2007).

 Moreover, activity in the posterior cingulate cortex and hippocampus is higher during 

intertemporal choice than uncertain outcomes without any delays (Luhmann et 

al., 2008;  Ballard and Knutson, 2009). 

 The functional coupling between the hippocampus and the anterior cingulate cortex is 
also correlated with how much episodic future thinking affects the preference for 
delayed reward (Peters and Bu¨ chel, 2010).



Hypothetical Outcome Signals in the 

Orbitofrontal Cortex
(A) Visual stimuli displayed during 
the choice and feedback epochs 
of a rock-paper-scissors task used in Abe 
and Lee (2011). Different colors for feedback stimuli were 
associated with different amounts of juice reward.

B) Payoff matrix (left) and changes in choice 
probabilities (right) during the same task (R, 
rock; P, paper; S, scissors). Dotted lines 
correspond to the Nash-equilibrium strategy 
(0.5 for rock and 0.25 for paper and scissors, 
respectively).



(C) Activity of a neuron in the orbitofrontal cortex that encoded the hypothetical 

outcomes from unchosen actions. Spike density functions are plotted separately according 

to the position (columns) and payoffs (line colors) of the winning target and the position 

of the target chosen by the animal (rows).



Social brain

 The most complex and challenging forms of decision making take place in a 

social context (Behrens et al., 2009; Seo and Lee, 2012). During social 

interactions, outcomes are jointly determined by the actions of multiple 

decision makers (or players).

 In game theory (von Neumann and Morgenstern, 1944), a set of strategies 

chosen by all players is referred to as a Nash equilibrium, if none of the 

players can benefit from changing their strategies unilaterally (Nash, 1950). 

In such classical game theoretic analyses, it is assumed that players pursue 

only their self-interests and are not limited in their cognitive  abilities. In 

practice, these assumptions are often violated, and choices made by 

humans tend to deviate from Nash equilibriums (Camerer, 2003). 

Nevertheless, when the same games are played repeatedly, strategies of 

decision makers tend to approach the equilibriums.



 Different tasks: The results from these studies have demonstrated that both 
humans and animals apply a combination of model-free and model-based 
reinforcement learning algorithms (Camerer and Ho, 1999; Camerer, 2003; 
Lee, 2008; Abe et al., 2011; Zhu et al., 2012). Dependent to: The ability to 
make inferences about the knowledge and beliefs of other decision-making 
agents is referred to as the theory of mind (Premack and Woodruff, 1978; 
Gallagher and Frith, 2003).

 Models of other players: theory of mind, such as the dorsomedial prefrontal 
cortex and superior temporal sulcus (Hampton et al., 2008; Behrens et al., 
2008).

 Most cortical areas included in the default network are activated similarly 
during the tasks related to episodic or autobiographical memory, 
prospection, and theory of mind (Gusnard et al., 2001; Spreng et al., 2009, 
Spreng and Grady, 2010; )



 Figure 4. Functions and Dysfunctions 

of the

 Default Network

 (A–C) Cortical areas activated by the 

recall of autobiographical memory (A), 

episodic future thinking (B), and 

mental simulation of other people’s 

perspective (C). Reproduced from 

Buckner et al. (2008).

 (D) Deactivation in the default 

network (blue, top) is absent in the 

brains of autistic individuals (black 

outlines, bottom; Kennedy et al., 

2006).



Social Cognitive Neuroscience

and the Example of Empathy



Topics in Social-Cognitive Neuroscience

• How do we process and represent other

people’s minds and how do they influence

us?

• Perception and memory of socially salient features (i.e. facial  

attractiveness, trustworthiness, emotional expressions)

• Action observation (Imitation, mirror neurons)

• Theory of Mind (TOM) & Mentalizing

• Empathy

• Moral emotions and moral and social reasoning

• Self Concept, Distinction between Self and Others

Social Level

Behavioral Level

Cognitive Level

Neural Level



Perception of Socially Salient Features

Emotional Facial Expressions Familiar and Famous Faces

Morris et al. (1986). Nature; Phillips et al., (1997). Nature.



Social Rewards: Attractive Faces

Mildly Happy Neutral

O’Doherty et al. (2003). Neuropsychologia



Social Judgement: Trustworthiness of Faces
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Winston et al. (2002). Nature Neuroscience



Socially Salient Cues of the Body:

Biological Motion



General Findings 

Brothers’ Extended Model of Social Cognition

Amygdala

STS

OFC
Fusiform

• Insula/somato-

sensory cortices

• Striatum



Adolphs Model of Social Cognition (2003)

Motivational Evaluation

• Amygdala
• Orbito-frontal cortex
• Ventral striatum

Emotional Response

in body

• autonomic, visceral
endocrine change

Representation of

emotion response

• Insula-somatosensory
cortices

Adolphs, R. (2003). Cognitive Neuroscience of Human Social Behavior. Nature Neuroscience Reviews

Detailed perceptual

processing

• Fusiform gyrus
• Superior temporal gyrus



The Amygdala and its Modulatory Role

Amygdala



Social-Cognitive Neuroscience

Social Neuroscience provides insights into people’s 

ability to understand the mental states and share the 

feelings of others.

Three Streams of Research in Social Neuroscience

● Theory of Mind (TOM) & Mentalizing 

● Action Observation, Imitation (Mirror Neurons)

● Empathy



Modern Social Neuroscience: 

How do we Understand the Other ?

• Theory of Mind (TOM) & Mentalizing

refers to our ability to understand mental states such as 

intentions, desires and believes of others.

• Empathy

refers to our ability to share the feelings of others, be it a 

particular emotion or sensory state of the other.



A Paradigm to Measure Empathy 
‚In Vivo‘ Using the Example of Pain

The ‘Pain Matrix’ in the Brain

Singer et al. (2004). Science
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Recent fMRI Studies on Empathy for Pain

0

6

Botvinick et al. (in press). Jackson, Metzoff & Decety (2004). NeuroImage. 

Seeing pictures of body 

parts in painful situations
Seeing facial 

expressions of Pain

Morrison et al. (in 2004). 

Y = 12

Bilateral

anterior insula

ACC

Singer et al. (2004). 

Singer et al. (2006). Nature 



• Wicker et al., 2003. Both the observation of disgusted faces and 

smelling disgusting odours activated the same restricted

group of brain structures, including the insula and ACC.

• Keysers et al., 2004. Secondary but not the primary somatosensory

cortex is activated when the participants were touched and when they 

observed someone or something else getting touched by objects.

• but see Blakemore et al., 2005

fMRI Studies on Emotional Contagion



When empathizing with others’ affective states

we activate representations reflecting the same 

bodily states  in ourselves. These shared affective 

representations allow us to know how it feels like for 

someone else to be for example in pain even in the 

absence of any stimulation to our own body

Conclusion



• Theories of social preferences predict that empathy 

should be modulated by the perceived fairness of other 

individuals, and that individual agents punish violations of 

social norms.

• Thus, empathy should be reduced or abolished towards 

agents whose behaviour deemed socially unfair and thus 

whom we dislike.

• Instead we might expect to observe evidence of 

‘Schadenfreude’ – the feeling of satisfaction 

experienced when social violators experience

punishment –as predicted by studies of 

altruistic punishment

Modulation of Empathic Responses



 Stage 1: Social 

learning

 Subjects play repeated 

prisoners dilemma with 2 

opponents – one fair, the 

other unfair

• Stage 2: Empathy for 

Pain Paradigm 

– Subjects observe 

both players in an in-

vivo empathy for 

pain study

The Experimental Paradigm

Singer et al. (2006). Nature

Singer et al. (2004). Neuron



One Game of the Social Learning Phase

Investment

YesNo

You have 10 Points

Do you want to send 

your money?
This is your playing partner

Wait for her decision

Your Partner decided to send  

You

10 points

Your points 

30

Your partners points 

30

Waiting 

Pay-off

Decision

3 sec.

3-12 sec.

3-6 sec.

3 sec.

3 sec.

Prepare for the 

next game



 Perceived fairness learned in social interactions strongly 
modulate empathic responses – seen in both behaviour 
and neural activity

 Loss of empathic activity seen in AI / ACC is accompanied by activity in 
accumbens correlates with the expressed desired for revenge to unfair 
individuals (in men)

 The data suggest gender difference which have to be 
pursued. 

 This may be part of proposed proximate mechanisms 
behind altruistic punishment
(e.g., social preference models, 

models of strong reciprocity; 

Boyd, Camerer, Gintis, Fehr, Gaechter, Rabin).

Conclusions




